771 research outputs found

    ISM S-Band CubeSat Radio designed for the PolySat System Board

    Get PDF
    Cal Poly’s PolySat CubeSat satellites have begun to conduct more complex and scientifically significant experiments. The large data products generated by these missions demonstrate the necessity for higher data rate communication than currently provided by the PolySat UHF radio. This thesis leverages the proliferation of consumer wireless monolithic transceivers to develop a 250kbps to 2000kbps, 2W CubeSat radio operating within the 2.45GHz Industrial, Scientific, and Medical (ISM) radio band. Estimating a link budget for a realistic CubeSat leads to the conclusion that this system will require a large deployable CubeSat antenna, large earth station satellite dish, and a fine-pointing attitude control system. Noise floor measurements of a CubeSat ground station demonstrate that terrestrial ISM interference can be minimized to below the thermal noise floor by carefully choosing the operating frequency. The radio is specifically designed as a daughter board for the PolySat System Board with a direct interface to the embedded Linux microprocessor. A state-of-the-art ZigBee transceiver evaluation board is measured to confirm its suitability for a CubeSat radio. A schematic is developed, which integrates the transceiver, power amplifier, low noise amplifier, amplifier protection circuitry, switching regulators, and RF power measurement into a single printed circuit board assembly (PCBA). The circuitry is then squeezed into a high-density, 1.4” x 3.3” layout. The PCBA is then manufactured, troubleshot, tuned, and characterized

    Concentrations of Pro-Inflammatory Cytokines Are Not Associated with Senescence Marker p16INK4a or Predictive of Intracellular Emtricitabine/Tenofovir Metabolite and Endogenous Nucleotide Exposures in Adults with HIV Infection

    Get PDF
    As the HIV-infected population ages, the role of cellular senescence and inflammation on co-morbid conditions and pharmacotherapy is increasingly of interest. p16INK4a expression, a marker for aging and senescence in T-cells, is associated with lower intracellular concentrations of endogenous nucleotides (EN) and nucleos(t)ide reverse transcriptase inhibitors (NRTIs). This study expands on these findings by determining whether inflammation is contributing to the association of p16INK4a expression with intracellular metabolite (IM) exposure and endogenous nucleotide concentrations

    Epidemiology, prehospital care and outcomes of patients arriving by ambulance with dyspnoea: An observational study

    Get PDF
    Background: This study aimed to determine epidemiology and outcome for patients presenting to emergency departments (ED) with shortness of breath who were transported by ambulance. Methods: This was a planned sub-study of a prospective, interrupted time series cohort study conducted at three time points in 2014 and which included consecutive adult patients presenting to the ED with dyspnoea as a main symptom. For this sub-study, additional inclusion criteria were presentation to an ED in Australia or New Zealand and transport by ambulance. The primary outcomes of interest are the epidemiology and outcome of these patients. Analysis was by descriptive statistics and comparisons of proportions. Results: One thousand seven patients met inclusion criteria. Median age was 74 years (IQR 61-68) and 46.1 % were male. There was a high rate of co-morbidity and chronic medication use. The most common ED diagnoses were lower respiratory tract infection (including pneumonia, 22.7 %), cardiac failure (20.5%) and exacerbation of chronic obstructive pulmonary disease (19.7 %). ED disposition was hospital admission (including ICU) for 76.4 %, ICU admission for 5.6 % and death in ED in 0.9 %. Overall in-hospital mortality among admitted patients was 6.5 %. Discussion: Patients transported by ambulance with shortness of breath make up a significant proportion of ambulance caseload and have high comorbidity and high hospital admission rate. In this study, >60 % were accounted for by patients with heart failure, lower respiratory tract infection or COPD, but there were a wide range of diagnoses. This has implications for service planning, models of care and paramedic training. Conclusion: This study shows that patients transported to hospital by ambulance with shortness of breath are a complex and seriously ill group with a broad range of diagnoses. Understanding the characteristics of these patients, the range of diagnoses and their outcome can help inform training and planning of services

    Barriers to and enablers of diabetic retinopathy screening attendance: a systematic review of published and grey literature

    Get PDF
    AIMS: To identify and synthesize studies reporting modifiable barriers/enablers associated with retinopathy screening attendance in people with Type 1 or Type 2 diabetes, and to identify those most likely to influence attendance. METHODS: We searched MEDLINE, EMBASE, PsycINFO, Cochrane Library and the 'grey literature' for quantitative and qualitative studies to February 2017. Data (i.e. participant quotations, interpretive summaries, survey results) reporting barriers/enablers were extracted and deductively coded into domains from the Theoretical Domains Framework; with domains representing categories of theoretical barriers/enablers proposed to mediate behaviour change. Inductive thematic analysis was conducted within domains to describe the role each domain plays in facilitating or hindering screening attendance. Domains that were more frequently coded and for which more themes were generated were judged more likely to influence attendance. RESULTS: Sixty-nine primary studies were included. We identified six theoretical domains ['environmental context and resources' (75% of included studies), 'social influences' (51%), 'knowledge' (51%), 'memory, attention, decision processes' (50%), 'beliefs about consequences' (38%) and 'emotions' (33%)] as the key mediators of diabetic retinopathy screening attendance. Examples of barriers populating these domains included inaccurate diabetic registers and confusion between routine eye care and retinopathy screening. Recommendations by healthcare professionals and community-level media coverage acted as enablers. CONCLUSIONS: Across a variety of contexts, we found common barriers to and enablers of retinopathy screening that could be targeted in interventions aiming to increase screening attendance

    X-linked cataract and Nance-Horan syndrome are allelic disorders

    Get PDF
    Nance-Horan syndrome (NHS) is an X-linked developmental disorder characterized by congenital cataract, dental anomalies, facial dysmorphism and, in some cases, mental retardation. Protein truncation mutations in a novel gene (NHS) have been identified in patients with this syndrome. We previously mapped X-linked congenital cataract (CXN) in one family to an interval on chromosome Xp22.13 which encompasses the NHS locus; however, no mutations were identified in the NHS gene. In this study, we show that NHS and X-linked cataract are allelic diseases. Two CXN families, which were negative for mutations in the NHS gene, were further analysed using array comparative genomic hybridization. CXN was found to be caused by novel copy number variations: a complex duplication–triplication re-arrangement and an intragenic deletion, predicted to result in altered transcriptional regulation of the NHS gene. Furthermore, we also describe the clinical and molecular analysis of seven families diagnosed with NHS, identifying four novel protein truncation mutations and a novel large deletion encompassing the majority of the NHS gene, all leading to no functional protein. We therefore show that different mechanisms, aberrant transcription of the NHS gene or no functional NHS protein, lead to different diseases. Our data highlight the importance of copy number variation and non-recurrent re-arrangements leading to different severity of disease and describe the potential mechanisms involved

    Commercial AHAS-inhibiting herbicides are promising drug leads for the treatment of human fungal pathogenic infections

    Get PDF
    The increased prevalence of drug-resistant human pathogenic fungal diseases poses a major threat to global human health. Thus, new drugs are urgently required to combat these infections. Here, we demonstrate that acetohydroxyacid synthase (AHAS), the first enzyme in the branched-chain amino acid biosynthesis pathway, is a promising new target for antifungal drug discovery. First, we show that several AHAS inhibitors developed as commercial herbicides are powerful accumulative inhibitors of Candida albicans AHAS (K-i values as low as 800 pM) and have determined high-resolution crystal structures of this enzyme in complex with several of these herbicides. In addition, we have demonstrated that chlorimuron ethyl (CE), a member of the sulfonylurea herbicide family, has potent antifungal activity against five different Candida species and Cryptococcus neoformans (with minimum inhibitory concentration, 50% values as low as 7 nM). Furthermore, in these assays, we have shown CE and itraconazole (a P450 inhibitor) can act synergistically to further improve potency. Finally, we show in Candida albicans-infected mice that CE is highly effective in clearing pathogenic fungal burden in the lungs, liver, and spleen, thus reducing overall mortality rates. Therefore, in view of their low toxicity to human cells, AHAS inhibitors represent a new class of antifungal drug candidates

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN
    corecore